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Abstract

The aim of this contribution is to show how the R-package robCompositions
can be applied to estimate missing values in compositional data. Two pro-
cedures are summarized, one of them being highly stable also in presence
of outlying observations. Measures for information loss are presented, and
it is demonstrated how they can be applied. Moreover, we introduce new
diagnostic tools that are useful for inspecting the quality of the imputed
data.

1 Introduction

1.1 Imputation

Many different methods for imputation have been developed over the last
few decades. The techniques for imputation can be subdivided into four
categories: univariate methods such as column-wise (conditional) mean or
median imputation, distance-based imputation methods such as k-nearest
neighbor imputation, covariance-based methods such as the well-known ex-
pectation maximization imputation method, and model-based methods such
as regression imputation. Most of these methods are able to deal with miss-
ing completely at random (MCAR) and missing at random (MAR) missing
values mechanism (see, e.g. Little and Rubin [1987]). However, most of the
existing methods assume that the data originate from a multivariate normal
distribution. This assumption becomes invalid as soon as there are outliers
in the data. In that case imputation methods based on robust estimates
should be used.
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1.2 Compositional Data

Advanced (robust) imputation methods have turned out to work well for
data with a direct representation in the Euclidean space. However, this is
not the case when dealing with compositional data.

An observation x = (x1, . . . , xD) is called aD-part composition if, and only
if, all its components are strictly positive real numbers and all the relevant
information is included in the ratios between them [Aitchison, 1986]. One can
thus define the simplex, which is the sample space of D-part compositions,
as

SD = {x = (x1, . . . , xD), xi > 0,

D∑
i=1

xi = κ} . (1)

Note that the constant sum constraint κ implies that D-part compositions
are only D − 1 dimensional, so they are singular by definition. It is, how-
ever, possible that the constant κ is different for each observation (for further
details, see Hron et al. [2008]). In any case, the important property of com-
positional data is that all information is contained in the ratios of the parts.
The application of standard statistical methods, like correlation analysis

or principal component analysis, directly to compositional data can lead to
biased and meaningless results [Filzmoser and Hron, 2008a,b]. This is also
true for imputation methods [Bren et al., 2008, Mart́ın-Fernández et al., 2003,
Boogaart et al., 2006]. A way out is to first transform the data with appropri-
ate transformation methods. Such transformations, preserving the specific
geometry of compositional data on the simplex (also called Aitchison geom-
etry), are represented by the family of log-ratio transformations: additive,
centered [Aitchison, 1986] and isometric (abbreviated by ilr, [Egozcue et al.,
2003] transformations. Standard statistical methods can then be applied to
the transformed data, and the results can be back-transformed.
Compositional data frequently occur in official statistics. Examples are

expenditure data, income components in tax data, wage components in the
Earnings Structure Survey, components of turnover of enterprises etc., and
all data which sum up to a constant or which carry all the information
only in the ratios. The problem of missing values in compositional data
including outliers is a common problem not only in official statistics, but also
in various other fields (see, e.g., [Graf, 2006, Filzmoser and Hron, 2008a]). In
the following Section we will briefly review two algorithms for imputation that
are described in detail in Hron et al. [2008]. Section 3 focuses on the use of
the R-package robCompositions, and Section 4 introduces some diagnostic
tools implemented in this package. The final Section 5 concludes.
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2 Proposed Imputation Algorithms

In the following we briefly describe the imputation methods that have been
implemented in the R-package robCompositions. The detailed description
of the algorithms can be found in Hron et al. [2008].

2.1 k-Nearest Neighbor Imputation

k-nearest neighbor imputation usually uses the Euclidean distance measure.
Since compositional data are represented only in the simplex sample space,
we have to use a different distance measure, like the Aitchison distance, being
defined for two compositions x = (x1, . . . , xD) and y = (y1, . . . , yD) as

da(x,y) =

√√√√ 1

D

D−1∑
i=1

D∑
j=i+1

(
ln

xi
xj

− ln
yi
yj

)2

. (2)

Thus, the Aitchison distance takes care of the property that compositional
data include their information only in the ratios between the parts.
Once the k-nearest neighbors to an observation with missing parts have

been identified, their information is used to estimate the missings. For rea-
sons of robustness, the estimation is based on using medians rather than
means. If the compositional data do not sum up to a constant, it is impor-
tant to use an adjustment according the sum of all parts prior to imputation.
For details, see Hron et al. [2008].

2.2 Iterative Model-Based Imputation

In the second approach we initialize the missing values with the proposed
k-nearest neighbor approach. Then the data are transformed to the D − 1
dimensional real space using the ilr transformation. Let de denote the Eu-
clidean distance. The ilr transformation holds the so-called isometric prop-
erty,

da(x,y) = de(ilr(x), ilr(y)) (3)

[Egozcue and Pawlowsky-Glahn, 2005]. Consequently, one can use standard
statistical methods like multiple linear regression, that work correctly in the
Euclidean space.
We take a special form of the ilr transformation, namely ilr(x) = (z1, . . . , zD−1),

with

zi =

√
D − i

D − i+ 1
ln

D−i

√∏D
j=i+1 xj

xi
for i = 1, . . . , D − 1 . (4)

Here, the compositional part x1 includes the highest amount of missings, x2
the next highest, and so on. Thus, when performing a regression of z1 on
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z2, . . . , zD−1, only z1 will be influenced by the initialized missings in x1, but
not the remaining ilr variables.
The idea of the procedure is thus to iteratively improve the estimation of

the missing values. After the regression of z1 on z2, . . . , zD−1, the results are
back-transformed to the simplex, and the cells that were originally missing
are updated. Next we consider the variable which originally has the second
highest amount of missings, and the same regression procedure as before
is applied in the ilr space. After each variable containing missings has been
proceeded, one can start the whole process again until the estimated missings
stabilize. The detailed description of this algorithm can be found in Hron
et al. [2008].
As a regression method we propose to use robust regression, like LTS

regression (see Maronna et al. [2006]), especially if outliers might be present
in the data.

3 Using the R-package robCompositions for Imputing
Missing Values

## Loading required package: ggplot2

## Loading required package: pls

##

## Attaching package: ’pls’

## The following object is masked from ’package:stats’:

##

## loadings

## Loading required package: data.table

## Registered S3 method overwritten by ’GGally’:

## method from

## +.gg ggplot2

## Registered S3 method overwritten by ’perry’:

## method from

## print.cvFolds cvTools

3.1 Data

The package includes the three compositional data sets aitchison359, aitchi-
son360, and aitchison395, that have been published in Aitchison [1986]. In
the following, however, we will use simulated data, where the data structure
and outliers are exactly known. The data generation is the same as described
in Hron et al. [2008], and a plot of the data set in shown in Figure 1 for the
original data (left) and for the ilr transformed data (right): We took 90 ob-
servations with 3 parts that are normally distributed on the simplex (i.e.
they are multivariate normally distributed in the 2-dimensional ilr space).

4



A group of 5 outliers (group 1 ) is added (green crosses in Figure 1) that
are potential outliers in the Aitchison and in the Euclidean space. Another
group (group 2 ) of 5 outliers (blue triangles in Figure 1) is only affecting the
Euclidean space. Note that both types of outliers are simulated to have a
considerably higher sum of their parts, which is not visible in the ternary
diagram [Aitchison, 1986] in Figure 1 (left) where the parts are re-scaled to
have sum 1.

The generated (complete) data are stored in the list element z2 of object
x. Among the non-outliers we set 20% of the values in the first part, 10% in
the second, and 5% in the third part to missing, using an MCAR mechanism.
The new data set is stored in the list element zmiss of object x.

## Warning in isomLRinv(z): ’isomLRinv’ is deprecated.

## Use ’pivotCoordInv’ instead.

## See help("Deprecated")
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Figure 1: Simulated data set with 5 points from outlier group 1 (symbol ×) and 5 points
from outlier group 2 (symbol △). Left plot: 3-part compositions shown in the
ternary diagram; right plot: data after ilr transformation.

3.2 Usage of the Imputation Methods Within the Package

We apply k-nearest neighbor imputation for the generated compositional
data set, and use the parameter k = 6:
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library("robCompositions")

packageDescription("robCompositions")$Version

## [1] "2.4.1"

xImp <- impKNNa(x$zmiss, k=6)

As a default, Aitchison distances are used for identifying the k-nearest
neighbors (further options are provided, see help file). By default, the median
is taken for re-scaling the k-nearest neighbors for imputation, but also other
choices are possible.
The resulting object xImp is of class

class(xImp)

## [1] "imp"

A print, a summary, and a plot method are provided for objects of this
class:

methods(class = "imp")

## [1] plot print summary

## see '?methods' for accessing help and source code

xImp

##

## ---------------------------------------

## [1] "31 missing values were imputed"

## ---------------------------------------

Various informations are included in the object xImp, which can be ac-
cessed easily:

names(xImp)

[1] "xOrig" "xImp" "criteria" "iter" "w"

"wind" "metric"

The list element xOrig contains the original data, xImp is the imputed data
set, w contains the number of missing values, and wind includes the indices of
the missing values (imputed values). All this information is needed in order
to provide suitable summaries and diagnostic plots.

The iterative model-based imputation method is applied with:
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xImp1 <- impCoda(x$zmiss, method='lm')

xImp2 <- impCoda(x$zmiss, method='ltsReg')

The first command uses classical least-squares regression within the algo-
rithm, the second command takes robust LTS regression.

4 Information Loss, Uncertainty, and Diagnostics

The quality of the imputed values can be judged by different criteria. We can
use information loss criteria and compute the differences of the imputed to
the observed data. If the observed data are known, we can use the bootstrap
technique for measuring the uncertainty of the imputation. If the observed
data are not known, diagnostic plots can be used for visualizing the imputed
values.

4.1 Information Loss Measures

We compare the imputed and the original data values by two different crite-
ria:

Relative Aitchison distance: (RDA) Let M ⊂ {1, . . . , n} denote the index
set referring to observations that include at least one missing cell, and
nM = |M | be the number of such observations. We define the relative
Aitchison distance as

1

nM

∑
i∈M

dA(xi, x̂i) (5)

where xi denotes the original composition (before setting cells to miss-
ing), and x̂i denotes the composition where only the missing cells are
imputed.

Difference in variations: (DV) We use the variation matrix T = [tij ], with

tij = var

(
ln

xi
xj

)
, i, j = 1, . . . , D ,

and the empirical variance for var. Thus, tij represents the variance of
the log-ratio of the parts i and j. Here, only the non-outlying original
observations are considered for computing T. On the other hand, T̃ =
[t̃ij ] denotes the variation matrix computed for the same observations,
where all missing cells have been imputed. Then we define the difference
in variations as

2

D(D − 1)

D−1∑
i=1

D∑
j=i+1

|tij − t̃ij | (6)
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Thus, RDA measures closeness of the imputed values in the Aitchison ge-
ometry, whereas the influence of the imputation to the multivariate data
structure is expressed by DV.

Using the iterative model-based algorithm for our test data set, we can
show that the robust procedure based on LTS regression gives more rea-
sonable results than its classical counterpart (the code for computing the
measures is snipped):

## [1] "RDA: iterative lm approach: 0.611"

## [1] "RDA: iterative ltsReg approach: 0.396"

## [1] "DV: iterative lm approach: 0.074"

## [1] "DV: iterative ltsReg approach: 0.031"

4.2 Measuring the Uncertainty of the Imputations

Little and Rubin [1987] suggests to estimate standard errors for estimators
via bootstrapping, and he outlines two approaches - a modified bootstrap
approach and a modified jackknife procedure - to measure consistent standard
errors when data will be imputed.

We draw bootstrap samples from both, the original data without missings,
and the data where some values were set to missing, hereby using the same
random seeds. For the latter bootstrap samples we impute the missing val-
ues with mean imputation (column-wise arithmetic mean), and classical and
robust iterative model-based imputation. We are interested in the geometric
mean of each variable. Figure 2 shows boxplots of the resulting geometric
means (computed only for the non-outlying observations) for r = 1000 boot-
strap replicates. The red horizontal lines indicate the geometric means for
the original data without outliers.
It is clearly visible that mean imputation - a simple method still frequently

applied - can lead to higher uncertainty, and that the results are biased. The
model-based procedures have a very similar behavior as the original data.

R <- 5

bootimp(x$z2, R=R)

4.3 Diagnostic Plots

Here we do not assume knowledge about the observed values. The goal is
to visualize the imputed values in an appropriate way. Because of space
limitations we only show results for the robust model-based procedure.

To avoid that imputed values are placed on the regression hyperplane(s),
one can add random noise to the imputed values. This can be done with the
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Figure 2: Boxplot comparison of the estimated column-wise geometric means of 1000
bootstrap replicates of the original data set and the data sets where missing
values were imputated with different methods. The red line is the column-wise
geometric mean of the original data. Outliers are excluded in the computation
of the geometric means.

function impCoda() using the parameter method = ltsReg2 which considers
the standard deviation of the residuals for generating the random noise.
A parallel coordinate plot [Wegman, 1990] can be generated by

plot(xImp1, which=2)
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The imputed values in certain variables are highlighted. One can select vari-
ables interactively, and imputed values in any of the selected variables will
be highlighted.
The third diagnostic plot (see Figure ??), a ternary diagram [Aitchison,

1986], can be generated with

plot(xImp1, which=3, seg1=FALSE)
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X1 X2

X3

The 3-part compositions are presented by three spikes, pointing in the
directions of the corresponding three variables. The spikes of the imputed
values are highlighted. This presentation allows gaining a multivariate view
of the data, being helpful for interpreting possible irregularities of imputed
values.

5 Conclusions

We provide the R-package robCompositions which includes advanced meth-
ods for imputation for compositional data. We have shown how the im-
putation methods described in Hron et al. [2008] can be applied with the
package. The methods are especially designed for data including outliers.
The performance of the methods is outlined in the original paper.
The package includes possibilities for evaluating the quality of the imputed

values: One can compute measures for information loss, use bootstrapping
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for estimating bias and uncertainty of parameters, and visualize the imputed
values with diagnostic tools. For 3-dimensional compositions the proposed
ternary plot is designed to highlight how well imputations are made and
which compositions were imputed. Note that many additional options can
be used within these plots given by the arguments of the plotting function.
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